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Abstract - -  A scale-invariant statistical theory of fields is presented that leads to invariant definition of density, velocity, 
temperature, and pressure. The definition of Boltzmann constant is introduced as kk ---- k = rakV'k C = 1.381"10 -23 J-K -1,  
suggesting that the Kelvin absolute temperature scale is equivalent to a length scale. Two new state variables called the reversible 
heat Qrev = T S  and the reversible work Wrev ---- P V  are introduced. The modified forms of the first and second law of 
thermodynamics are presented. The microscopic definition of heat (work) is presented as the kinetic energy due to the random 
(peculiar) translational, rotational, and pulsational motions. The Gibbs free energy of an element at scale/3 is identified as the total 
system energy at scale (/3 - 1), thus leading to an invariant form of the first law of thermodynamics Uf~ = Q~ - W~ -I- Ne~ U ~ - I .  
~)1999 [~ditions scientifiques et mfidicales Elsevier SAS. 
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S isentropic 
T isothermic 
V isochoric 

Superscripts 

i internal 
k kinetic 
p potential 
r rotational 
t translational 
v pulsational kinetic 

x 

1. INTRODUCTION 

Turbulent  phenomena are common features in diverse 
and seemingly unrela ted branches of physical  sciences. 
This  is in par t  evidenced by the similarit ies between 
the stochast ic  quantum fields [1-16] on the one 
hand,  and classical hydrodynamic  fields [17-26], on 
the other  one. Thus, the problem of turbulence 
involves stochast ic  mot ion of a cluster of galaxies 
[23, 27], turbulent  eddies [17-26], and photons [28] 
at  cosmological, hydrodynamic ,  and chromodynamic 
scales. In recent investigations [29-30], a scale-invariant 
model  of s ta t is t ical  mechanics was shown to result in a 
modified theory of Brownian motions and the hypothesis  
of the  existence of an equil ibrium sta t is t ical  field called 
cluster-dynamics. In the present study, the appl icat ion 
of the scale-invariant model  of s ta t is t ical  mechanics to 
the  field of s ta t is t ical  thermodynamics  is described. 

2. A SCALE-INVARIANT MODEL 
OF STATISTICAL MECHANICS 
AND INVARIANT DEFINITION OF 
DENSITY, VELOCITY, TEMPERATURE 
AND PRESSURE 

The scale-invariant model  of s ta t is t ical  mechan- 
ics for equil ibrium galacto-, p lanetary- ,  hydro-system, 
fluid-element-, eddy-,  cluster-,  molecular-,  atomic-,  
subatomic-,  kromo-, and tachyon-dynamics  correspond- 
ing to the  scale ~ = g, p, h, f, e, c, m, a, s, k, and t are 
shown in figure 1 [29]. Also shown are the corre- 
sponding non-equilibrium, laminar  flow fields. Each 
s ta t is t ical  field, described by a d is t r ibut ion function 
f~ (u~) = f~ (r~, u~, t~) drf~ du~, defines a "system" tha t  
is composed of an ensemble of "elements", each element 
is composed of an ensemble of small  part icles viewed 
as point-mass "atoms".  The  element (system) of the 
smaller  scale (j)  becomes the a tom (element) of the  
larger scale (j  + 1). 
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Figure 1. A scale-invariant view of statistical mechanics 
from cosmic to tachyonic scales. Equilibrium galacto- 
dynamics (EGD), planetary-dynamics (EPD), hydro-system- 
dynamics (EHD), fluid-element-dynamics (EFD), eddy-dynamics 
(EED), cluster-dynamics (ECD), molecular-dynamics (EMD), 
atomic-dynamics (FAD), subatomic-dynamics (ESD), kromo- 
dynamics (EKD), tachyon-dynamics (ETD). 

Following the classical methods [31 35], the invariant 
definitions of the densi ty p~, and the velocity of element 
vz, atom u~, and system w~ at the scale ~3 are [29]: 

/ - /  p ~ = n ~ m ~  = m ~  f~du~, v ~ = p ~ l m ~  u~f~du~ (2.1) 

u~ = V~-l, wz = v~+l (2.2) 

The invariant equilibrium and non-equilibrium trans- 
lational temperature and pressure are: 

3kT~ = m~ < u~ > ,P~ = p~ < u~ > / 3 , 3 k T z  = 

and F~ = n a m  z < V'~ > / 3 ,  leading to the correspond- 
ing invariant ideal "gas" laws [29]: 

P~V = N~ kTa and FzV = N~ kTz (2.3) 

At the scale of EKD, one obtains  the tempera ture  
and pressure of photon gas: 

k Tk = mk < U~ > /3 = mk < u~x + U2y -~- U~z > /3 

= mk (3C2)/3 = mk C 2 (2.4) 

P k = p k < U k  2 > / 3 = p k C  2 = n k m k C A k V k = n k h k V k  

= nk Ek = Ek (2.5) 

where hk = m k  Ak C = h = 6.626.10 T M  J.s is the Planck 
constant .  Following this definition of h by Planck [36, 
37] involving the wavelength Ak (space), we introduce 
the definition of the  Bol tzmann constant  as: 

kk = k ----- mkVkC = 1.381-10 -23 J-K -1 (2.6) 
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Figure 2. Schematic diagram of reversible heats: (a) reversible isentropic heat Qs, (b) reversible isothermal heat QT, (c) 
total reversible heat Qrev = Qs -I- QT. 

involving frequency Vk (time). Hence, the Kelvin 
absolute temperature scale is identified as a length scale, 
n k Tk = n k Ak = Pk ----- Ek. Also, following de Broglie 
hypothesis  for the  wavelength of ma t te r  waves [2]: 

A n = h/p~ (2.7) 

where p~ -- m~ vn is the  momentum,  we introduce the 
relat ion 

~ = k / p ~  (2.8) 

for the frequency of ma t t e r  waves. Therefore, the mass 
of photon  is predicted as 

mk = (hk/c3) 1/2 -= 1.84278.10 -41 g (2.9) 

tha t  is much larger than  the repor ted  value of 4.10-51 kg 
[38]. This leads to the  mean- free-path and the frequency 
of photons in equil ibrium kromodynamic  field EKD 
(figure 1) 

Ak ---- 0.119935 m, Uk ---- 2.49969"109 Hz (2.10) 

the Avogadro number  N ° = 1~(rake 2) = 6.0376.1023, the  
universal gas constant  R = N ° k  = 1/Ak ---- 8.3379 m -1, 
and the photon molecular weight Wk = N ° m k  = 
1.1126.10 -17 kg.mo1-1. In view of definition of N ° given 
above, equation (2.4) leads to the  ideal gas law for 
photons in equil ibrium vacuum state ,  EKD field at  
Tk ---- , ~ k  = 0.119935 m, as 

N ° kTk -- 1 (2.11) 

3. DEFINITION OF REVERSIBLE HEAT AND 
WORK 

3.1. Definition of reversible heat 

A new thermodynamic  s tate-variable  called reversible 
heat is introduced as 

dQr~v = d(TS)  = T d S + S d T = d Q T + d Q s  (3.1) 

The isothermal reversible heat dQT and the isentropic 
reversible heat dQs are respectively the area under 
the ( T - S )  and ( S - T )  curves, schematical ly shown 
in figures 2a and 2b. Therefore, the to ta l  reversible 
heat  between the initial  and the final s ta tes  becomes 
independent  of the actual  pa th  taken as shown in 
figure 2c. 

3.2. Definition of reversible work 

Another  new thermodynamic  s tate-variable  called 
the  reversible work is introduced as 

dWrev = d (PV)  - P d V  + V d P  = dWp + dWv (3.2) 

The reversible isobaric (dilatational) work dWp and 
the reversible isochoric (stress) work dWv represent 
the areas under the ( V - P )  and ( P - V )  curves, as 
shown in figures 3a and 3b, respectively. Therefore, 
the to ta l  reversible work Wrev = P2 1/2 - P1 II1 is path-  
independent ,  as shown in figure 3c. The isochoric work 
Wv = V ( P 2 -  P1), tha t  is like the  shaft work [39], 
maybe  also considered in one-dimension in terms of 
an elongation of an elastic medium according to the 
generalized definition of work 

dWrev -- d ( F -  x) = F ' d x  + x ' d F  (3.3) 

tha t  is composed of the reversible displacement work 
dWD = F.dx and the reversible stress work dWs = x.dF.  

An example of stress work is the iso-kinetic type  
of work tha t  is done by a person holding a weight at  
the  end of a horizontal ly-stretched and motionless arm, 
in the presence of a gravitational field. In this case, 
the larger the weight being held by the person, the 
larger will be the volume of the active body  muscles 
under unbalanced stress, and the larger will be the  
magni tude of such muscular  stress gradients  in order 
to keep the larger weight s tat ionary.  Similarly, when a 
person pushes against  a s ta t ionary  and rigid wall, thus 
creating higher stresses on the contact  surfaces, this 
person is doing work even though there is no visible 
displacement.  
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Figure 3. Schematic diagram of reversible work: (a) reversible isochoric work Wv, (b) reversible isobaric work Wp, (c) 
total reversible work Wrev = Wv -I- Wp. 

4. MODIFIED FORMS OF THE FIRST LAW 
AND THE SECOND LAW OF THERMO- 
DYNAMICS 

form of the second law of thermodynamics is introduced 
as: 

~Qact ~ dQrev = d ( T S )  (4.7) 

4.1 Modified form of the first law of 
thermodynamics 

In view of equations (3.1) and (3.2), the modified 
form of the first law of thermodynamics is introduced 
as: 

d(T S) = dU + d(P V) - d(E' #i Ni) (4.1) 

or 

dQrev : dU + dWre. - 22 d(#i Ni) (4.2) 

that leads directly to the Euler equation for a simple 
fluid: 

U = T S - P V + p N  (4.3) 

For non-reactive systems, equation (4.1) reduces to: 

d G =  d(H - T S )  = 0 (4.4) 

when H = U + P V  is the enthalpy. The modified form of 
the first law in equation (4.1) may be obtained directly 
by addition of the Gibbs equation: 

dU = T d S  - P d V  + 22 #i dNi (4.5) 

and the Gibbs-Duhem equation 

S d T  - V d P +  22 Ni d#i = 0 (4.6) 

The above inequality states that during any real, 
non-quasistatic process, the actual thermal energy 6Q~ct 
that is added to the system will be always less than 
what is calculated on the basis of the change of state 
variables from the beginning to tile end of the process 
dQrev = d(TS). This is because, during all real processes 
some energy will always be dissipated into heat, 

5Q~ct + 5Qdis = dQrev = d(T S) (4.8) 

and since dissipation is always positive 5Qdis ~ 0, one 
arrives at the inequality 

Qact ~ Qrev ~- T2 $2 - T1 $1 (4.9) 

According to the classical theory of Clausius, the 
reversible heat 

6Qrev = T d S  (4.10) 

is not an exact differential because in general the 
temperature T varies along different paths. However, 
according to the modified theory being presented 
herein, the reversible heat dQrev = d(TS) is in fact 
a state property. The definition of entropy will be based 
on the reversible-isothermal heat QT = T ( S 2 -  S1) 
schematically shown in figure 2a. Examination of 
figure 2 shows that, with the modified definition of 
reversible heat in (3.1), one can construct a Carnot 
cycle composed entirely of heat transfer processes. 

4.2. Modified form of the second law of 
thermodynamics 

Following the classical statement of the second law of 
thermodynamics by Clausius 5Qact ~ T d S ,  the modified 
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Following the classical procedures [40-42], the energy 
of each element, say molecule in the quantum state i, 
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is decomposed into the external kinetic energy, the 
external potential energy, and the internal energy as: 

($i)tot k p i i (5.1) = (Ei)ext ~- (gi)ext -~ (~i)int = ~i k -~ gi p -~ Ei 

Using the definition in equation (5.1), the total 
energy of the system becomes 

V=ZN,(~ i ) to t  = E N i  ( ~  + ~  + ~i) (5.2) 

such that  

dU = { ~  dNi + ~ N~ d~[} + { ~  dgl + ~ N i d ~ }  

+(Z~I dN~ + ~ N~ d~i~} (5.3) 

By comparisons between the above expression and 
equation (4.1), one arrives at the definitions: 

[ t h e r m a l  k ine t i c  ene rgy]  (5.4) 

W = P V = -~UP~×t = -ZYs p Ni 

[ m e c h a n i c a l  p o t e n t i a l  ene rgy]  (5.5) 

G = # N = ZU~.t = Xs~i N~ 
[ in ternal  energy]  (5.6) 

6. M I C R O S C O P I C  D E F I N I T I O N  OF H E A T ,  
W O R K ,  A N D  I N T E R N A L  E N E R G Y  

6.1.  T h e r m a l  k ine t i c  e n e r g y  

The classical expression for the internal energy 
associated with the random translational motions of 
monatomic ideal gas is 

U = ( 3 / 2 ) X k T  = (3/2) N m  < u~ > 

It is now argued that  the classical reason for the 
occurrence of the numerical factor 3 in this expression, 
namely to account for three-translational degrees of 
freedom, is not correct. The principle of equipartition 
of energy requires that  the three translational degrees 
of freedom be statistically equivalent because of the 
isotropy of space. However, this does not mean that  at 
any instant of time, each molecule should be considered 
to move in all three directions simultaneously; that  is 
physically impossible. 

According to the modified theory being presented 
herein, the factor 3 in U = ( 3 / 2 ) N k T  is because 
there are three distinguishable types of thermal kinetic 
energy of molecules respectively called the translational, 
the rotational, and the vibrational thermal kinetic 

(a) 
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f 
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Figure 4. Schematic drawing of (a) translational, (b) rotational, 
and (c) pulsational harmonic motions in one and two 
directions. The five time steps t l - t5  show successive: (a) 
position of translating particle, (b) position of the marker on 
a rotating particle, (c) position of outer radius of a pulsating 
particle during each period. 

energy. The isotropy of space requires that  the energy 
associated with the motions along the two directions 
of linear translation (x +, x - ) ,  angular rotation (0 +, 
0- ) ,  and radial pulsation (r +, r - )  must be identical 
(figures 4a-4c). Therefore, the elements are assumed to 
perform forward-versus-backward harmonic translation, 
clockwise versus counter-clockwise harmonic rotation, 
and radially-outward (explosive) versus radially-inward 
(implosive) harmonic pulsations as shown in figure 4. 

6.1.1. Harmonic translator  

The principle of equipartition of energy requires that  
for any arbitrary coordinate x, the energy of motions 
along each of the two arbitrary directions (x +, x - )  
should be identical < U2x+ > = <  U2x > (figure 4a) such 
that  the translational kinetic energy becomes: 

T K E  = ¢~ = rrti < U2x+ > /2 

"~ ?Tti < '/3,2 _ > / 2  = 'm,i < Ui2x-F > (6.1) 

This leads to the modified definition of temperature: 

(1/2) k T = mi < Ui2x+ > / 2  (6.2) 

From the summation over all the molecules within a 
cluster one obtains: 

ui ~ = :c  = N, k T (6.3) 

Next, another summation over all the clusters within 
the system gives: 

U t = ZNi k T = N k T (6.4) 

8 4 9  
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6.1.2. Harmonic rotator 

Following classical methods [40], under rigid-body 
rotation of the  cluster about  an a rb i t ra ry  axis (x +) at 
angular  velocity w = Wix+, each molecule within the 
cluster has the orbi tal  velocity vi = ri x wi~+ when ri is 
the minimum distance from the molecule i to the axis 
of ro ta t ion (x+). Hence, the  rota t ional  kinetic energy is: 

V K E  = (1/2) -% r~ w~ = (1/2) ±, wi ~ . (6.5) 

where Ii = rni r~ is the moment  of inertia. For ro ta t ion 
occurs in two-directions (0 +, 0 - )  as shown in figure 4c, 
the ro ta t ional  kinetic energy per  molecule becomes: 

C[ = Ii < 022+ > /22Fi i  < 022 - > / 2  = Ii < 022x+ > : k T  
(6.6) 

By summat ion  over all the molecules tha t  form the 
ro ta t ing  cluster c, one obtains: 

2 
Ui  r = C  = ~y: r = E I i  < W i x  + > = i r e  < W ~ x +  > = N i k T  

(6.7) 

Next, from summat ion  over all the clusters within 
each eddy one obtains: 

U r : g r : E E  r : ~ ' U i  r : ~E'Ni I~ < W~x+ > = N k T 
(6.8) 

6.1.3. Harmonic pulsator 

The clusters are modeled as spherical balloons tha t  
undergo harmonic spherical ly-symmetr ic  pulsat ions (fig- 
ure ~c). Following the classical methods  [40], the  dy- 
namic force on such a molecule is given by the Newton 
law of mot ion as rni (d2rl /dt  2) = rni (dwi /dt ) ,  where the  
radial  velocity is wi = drl /dt .  The vibrat ional  kinetic 
energy is: 

j i  d w j  jfrO i dri V K E  = mi - ~ -  drl = mi dwi d--T 

~0 wi 1 
= m i  w i  d w i  = w i  2 (6.9) m i  

If one now includes pulsat ion in two directions (r +, 
r - )  as shown in figure 4c, one obtains  the pulsat ional  
kinetic energy per  molecule: 

v = m i  < Wi2r+ > = 2 ( k  T / 2 )  = k T ( 6 . 1 0 )  

The summat ion  over all molecules within the 
pulsat ing cluster c results in 

v 2 Ui v = a¢ = ~ '  = ~ m i  < W i t +  > = Ni k T  (6.11) 

Finally, another  summat ion  over all clusters in an 
eddy gives 

U v = e~ = ~ ' ~  = N k T  (6.12) 

8 5 0  

In summary,  because of the equipart i t ion principle, 
the total thermal kinetic energy per molecule, cluster, 
and eddy become: 

ei k = e [ +  r + V = 3 k T  (6.13) 

u k  = ek = u t  + u (  + u [  = 3 Ni k T (6.14) 

u k : E k e  = U t  w u r  + u v = 3 N k T  (6.15) 

Also, in view of equation (5.4), one obtains from 
(6.14) and (6.15) 

T S i  = ekNi = Ui k = 3Ni k T  (6.16) 

T S  = I?,U k = V k = V = 3 N k T  (6.17) 

6.2. Mechanical potential energy 

The mechanical  potent ia l  energy of the system will be 
identified as the kinetic energy associated with the  non- 
equilibrium t ranslat ional ,  rotat ional ,  and pulsational  
motions of the molecules defined as: 

~.pt : 3k~'i = rni < (Vi') 2 > / 2  = 3mi < (V/x) 2 > 

(6.19) 

~ r  = 3 k v  = mi  < ( ~ ; ) 2  > / 2  = 3 m i  < (~ ;0+)  2 > 

(6.20) 

~ v  = 3 k v  = -~i < ( w / )  ~ > / 2  = 3~ni < (Wi'r+) ~ > 

(6.21) 

where V[ = u i -v l ,  F/~x+ = ¢9i×+-(O¢x+, and W[ = w i - w c  
are the peculiar t ranslat ional ,  rotat ional ,  and pulsat ional  
velocity of the molecule. Collecting the separate  
contributions,  the total potential energy per molecule, 
cluster, and eddy become: 

pr  pv  
Ei p = £p t  _~_E i ~_Ei  ~--. 3 k V  ( 6 . 2 2 )  

U p = ~'~' i  p : ~ P N i  = u i P t - ] - v p r - i - V i P V : 3 N i k ' ~  

(6.23) 

U p : E U  p = U  p t + U  p r + U  p v = 3 N k T  (6.24) 

6.3. Internal energy 

Finally, the internal energy U i of the system is 
identified by Eq. (5.6) tha t  for a simple fluid gives 
the Gibbs free energy 

G : z ~ i  Ni = U i = # N (6.25) 

Therefore, the Gibbs free energy per molecule gi 
(chemical potent ia l  #i) is expressed as the product  of 
the internal molecular pressure Pmi = P and volume 

~ i  = gi  = ~i ---- P m i  Vmi : 3 k T (6.26) 
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where Vmi is the volume of the molecule. The summat ion  
of the  preceding equation over all molecules in a cluster 
gives the total internal energy per cluster, 

G~ = U: =/z i  Ni = P V¢ = 3 N~ k T (6.27) 

where V~ --= 2:Vml = N i Y m i  is the volume of the cluster. 
Similarly, the  summat ion  of equation (6.27) over all 
clusters in an eddy gives the  total internal energy of the 
system 

G = U ~ = P V  = 3 N k T  (6.28) 

where V~ = V = EVe is the system or the eddy volume. 

When  the results of sections 6.1-6.3 are collected, 
the modified form of the first law of thermodynamics  
becomes 

dU = d(T S) - d(~ V) -t- d(/~ N) (6.29) 

leading to the modified Euler equation 

U = T S - ~ V + /z  N (6.30) 

Because Gi/3 -- U~f~ by (6.27), and according to 
figure 1, the internal  energy of an element at scale 
/3 is the  to ta l  energy of the system at the  lower scale 
(/3 - 1), U~ = U~-I ,  one arrives at  the invariant form of 
the  modified form of the first law of thermodynamics:  

U~ = Q~ - Wz + a ~  = Q~ - w~ + N ~  (~i)/~--1 = 

Q~ - W~ + NeZ U~_~ . . . .  (6.31) 

when N ~  is the  number  of elements (energy levels) in 
the system at scale/3. 

7. DEFINITION OF ENTROPY AND ITS 
RELATION TO THE THERMAL KINETIC 
ENERGY 

Under isothermal conditions,  equation (5.4) reduces 
to 

T d S  = ~E k dNi (7.1) 

tha t  may be expressed as 

T d E S i  = Z¢ k dN~ (7.2) 

and, through the removal of the  summation,  as 

T d S i  = ~i k dNi (7.3) 

Integrat ion of the above equation, with zero integra- 
t ion constant  due to Nerns t -P lanck  s ta tement  of the 
th i rd  law of thermodynamics ,  gives 

T Si  = gk Ni ----- Ui k -- 3 Ni k T (7.4) 

such tha t  

Si = 3 Yi k (7.5) 

Summation over all clusters within the system results 
in 

S -- 3 N k (7.6) 

and hence 

T S  = 3 N k T  (7.7) 

in accordance with equation (6.17). 

For an adiabatic system, when the potent ia l  energy 
is constant  and reactions are absent,  equation (5.3) 
reduces to: 

dU -- d Z U  k -- d ( Z ~  N?) -- ~ dN~ + ZN~ d~  = 0 
(7.8) 

tha t  leads to 

dN~ = -N~  d ~  j ---- t, r, v (7.9) 

Parallel  to the  classical methods  [40, 41], when 
d ~ / ( k T )  is a constant ,  the above expression gives the 
classical relat ion for equil ibrium dis t r ibut ion of part icles 
N~ among various quantum states:  

dN~/N~ = -d~ii /kT j = t , r , v  (7.10) 

or  

dlnN~ = - d ~ i / k T  (7.11) 

From the integrat ion of the above equat ion one 
obtains the modified Boltzmann distribution functions: 

N~ = e-ae  -(~i/kT) = e -(~i/kT)+l j = t , r , v  (7.12) 

The choice ~ = - 1  in equation (7.12) insures tha t  
when the energy ~ becomes equal to tha t  of a single 
molecule kT, one obtains  Ni ---- 1 as is to be expected. 

The summat ion  of equation (7.12) over all t ransla-  
tional,  rotat ional ,  or v ibra t ional  quan tum states  results 
in: 

i i i 

j = t , r , v  (7.13) 

when the translational, the rotational, the vibrational 
partition function Z j are defined as 

Z j = ~_~e-(~/kT) j = t , r , v  (7.14) 
i 

Also, the product  of equation (7.13) with j --- t, r,  
and v, results in: 

Ni : N t N'[ N v : e -as e - (~/kT)  = e -(e~/kT)+a (7.15) 
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The summat ion of equation (7.15) over all quan tum 
states of the system gives 

~ N i  = N = e 3 z t z r z  v = e 3 Z (7.16) 

when the t o ta l  p a r t i t i o n  f u n c t i o n  Z is defined as 

Z = E e - ( ~ / k T )  (7.17) 
i 

or Z = Z t Z r Z v, in accordance with the classical results 
[40-42]. 

For an ideal gas with only translat ional  degree of 
freedom, one obtains the classical results [40 41]: 

Z t 
- -  = ~ "  ( 7 . 1 8 )  
N 

G t = - c ~ N k T  (7.19) 

Z t U t 
111 W t = g In ~ -  + ~-~ + N (7.20) 

When a = -1 ,  in accordance with the modified 
Bol tzmann distr ibution function in equation (7.12), 
the results in (7.18) (7.20) reduce to G t = N k T ,  
and T S t = T k In W t = N k T. Therefore, including all 
three degrees of freedom and applying the equiparti t ion 
principle leads to: 

G = G ~ + G r + G v = 3 N k T  (7.21) 

T S = T ( S t + s r + s  v) = 3 N k T  (7.22) 

that  are in accordance with equations (6.28) and (6.17). 

8. C O N C L U D I N G  REMARKS 

A new state function called the reversible heat 
was introduced that  is composed of isothermal and 
isentropic heat. Also, another new state function 
called the reversible work was introduced that  is 
composed of isobaric and isochoric work. The concepts 
of reversible heat and work resulted in the introduction 
of the modified forms of the first and the second 
law of thermodynamics.  Both macroscopic as well as 
microscopic definitions of heat, work, and internal 
energy were presented and the relation between entropy 
and thermal kinetic energy was examined. The definition 
of the Boltzlnann constant was introduced as k = 
rnk L'k C = 1.381"10 -za J.K -~., suggesting an equivalence 
between the Kelvin absolute temperature scale and 
length scale. The new physical concepts are harmonious 
with the classical results, and appear to provide higher 
degrees of symmetry in the mathematicM expressions 
of the laws of thermodynamics.  The results will be 

useful for the future development of the grand unified 
statistical theory of fields. 
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